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ABSTRACT

We examine the performance of free-energy perturbation methods when applied to compute the
chemical potential of the Lennard-Jones model by Monte Carlo simulation. We emphasize the
accuracy and precision of various implementations of the methodology, particularly in the
context of the relative effectiveness of “insertion” versus “deletion” approaches. The study is
limited to asingle state point and system size. In accord with recent arguments made in the
context of the hard-sphere model, we find that any single- or multi-stage approach that
incorporates a*“ deletion” component shows greatly diminished accuracy and precision when
compared to its “insertion” counterpart. We aso confirm our earlier conjecture that the entropy
rather than the free energy isthe important quantity to examine when formulating optimal

multistage free-energy perturbation schemes.
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INTRODUCTION

The chemical potential isakey quantity in the calculation of phase and chemical equilibria
Therefore its evaluation (explicitly or implicitly) isahigh priority in ssmulations aiming to study
these phenomena. Often this measurement is very difficult to perform with any precision. The
origin of the difficulty istypically explained by pointing out that molecular configurations that
contribute most to the measurement are not well sampled during a conventional simulation.
This explanation tells only half of the story. It must also be noted that the poor sampling can
come about from one of two fundamentally different mechanisms, one entropic and the other
energetic [1]. The efficient and successful application of an algorithm for computing the
chemical potential requires an appreciation of these effects. A lack of understanding here can
(and has) lead to a misapplication of methodology and, more serioudly, a misinterpretation of
results. The purpose of this paper isto demonstrate these points through application of staged
free-energy perturbation methods to the calculation of the chemical potential of the Lennard-
Jones model system.

Available methods for computing the chemical potential by molecular simulation are of
four types. Inall casesthe goal isto evaluate the free-energy difference between systems
differing in the presence of asingle molecule. Thisdifferenceisrelated in atrivia way to the
chemical potential. The (overlapping) categories are[1]:

free-energy perturbation. This method permits computation of the free-energy difference

between two systems while ssimulating only one of them. It isthe focus of this paper.

expanded ensembles. [2-5] In this approach the system wanders (with bias) among different

thermodynamic states, or ensembles, and the frequency with which the states are visited permits

evaluation of the free-energy differences.

thermodynamic integration. In simplest form thisinvolves the straightforward numerical
integration of the fundamental thermodynamic equation of a chosen ensemble. The most useful

extensions formulate non-traditional thermodynamic integration pathways.



histogram/distribution methods. [6-9] These approaches gather the greatest possible amount of

information from a (or each) simulation, perhaps add some understanding from theory, and
analyze it al to extract the chemical potential. We have identified [1] these methods as the most
likely route to advance the chemical-potential measurement methodology, but we do not

consider them further in this report.

FREE-ENERGY PERTURBATION METHODS
Single-stage methods
The working equation for free-energy perturbation connects the Helmholtz free energies A
for two systems (subscript O and 1, respectively) that differ in some specific way [10]
exp[-b(A - Ag)]={exp[-b(F1- Fo)]), D
whereb = 1/KT with T the absolute temperature and k Boltzmann’s constant; F isthe
Hamiltonian. The angle-brackets describe a canonical-ensemble average, and the ‘0’ subscript
on it indicates that configurationsin the ensemble are weighted according to the potential F .
Obvioudly, Eg. (1) can be written withthe ‘0’ and ‘1’ subscripts interchanged, so in principle
either system may serve asthe “reference”. In many instances F is defined asthe
intermolecular potential for asystem of N or N-1 particles, Uy or Uy.1 respectively.
Taking the ‘0" system in Eq. (1) as having N-1 particles, and the ‘1’ system as having N,
A1—Ag isthe chemical potential and we obtain Widom’s method [11, 12]
exp[-bm ] ={a}y , @
where g = exp(-buy ) isthe Boltzmann factor of the energy u; © Uy — Up.1 Of the Nth “test”
particle. The method workswell if sufficiently many configurations find no test-particle
overlap, i.e. if configurations important to the N-particle system are well sampled. Alternatively,
if wetakethe 'O system having N particlesand the ‘1’ system comprising N-1, we derive the
“test-particle removal” formula[7] (and references therein)
exp[+bm | ={1/ &}, (3)
Thetest particle may be any of the N (interacting) spheres. In practice asimulation based on

thisformulais completely unreliable, as the average contains an enormous contribution from
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configurations that are never sampled. The outcome is a consistent, practically systematic,
underestimation of the chemical potential.

Superficialy, test-particle insertion and removal are symmetric operations, so it is perhaps
surprising to see that measurement methods based on each have drastically different levels of
reliability. Inthe context of Widom insertion/deletion this outcome iswell known [7, 13-17]
and well (if not widely) understood. A diagram is helpful in conveying the nature of the
asymmetry. Figure 1 presents a highly schematic depiction of phase space—the 3N-
dimensional space of particle configurations. The dark oval representsall configurations that
are important to the system of N-1 particles, and the white square within it represents all
configurations important also to the N-particle system. Here “important” means those
configurations that contribute significantly to the partition function. The significant featureis
that the N-important region lies within the N-1 important region, and may represent avery small
fraction of it (say of the order of 10~/ or smaller).

In Widom’ sinsertion method, the system samples the (N-1)-important region, and finds
contributions to the ensemble average of Eq. (2) in those (sometimes rare) instances in which
the N-important region is encountered by chance. Here the barrier to sampling isentropic. The
probability of sampling the significant region isin proportion to its fractional representation,
e.g., itisaprobability of order 10-7. In contrast, the particle deletion method samples the N-
important region while the greatest contribution to the ensemble average of EQ. (3) liesin those
(N-1)-important configuration outside of thisregion. The significant configurations are not
sampled because they are of a prohibitively high energy, i.e., the barrier to sampling is
energetic. The probability of sampling the significant region isin proportion to the Boltzmann
factor, which may be an extremely tiny probability, e.g., 10-% or smaller. The contribution to
the average isinversely proportional to the likelihood of sampling, so missing these low-
probability configurations has a disastrous consequence for the accuracy of the measurement.
The problem is especially insidious because the error statistics for the measurement do not
betray the trouble, which isto say the method returns aresult that is precisely wrong.
Multi-stage methods



Multi-stage methods are based on the idea of constructing the free-energy difference of
interest (An—An-1) Via (An—Aw) + (Aw—An-1), Where Ay isthe free energy for an intermediate
system that is formulated to facilitate the chemical -potential calculation. Thisintermediateis
defined by the potentia Fy, whichin turnis defined viaaweight function W: Fy = Un.1 —
INW. Four approaches may be constructed depending on how one chooses to compute the
component free energy differences (An—Aw) and (Aw—An-1) using Eq. (1). These are
summarized in Table 1. The working formulas there specify the ensemble averages needed in
the systems of N particles, N-1 particles, or the intermediate W, as indicated.

Umbrella sampling is perhaps the best known of the methods [18, 19]. It hasthe
advantage of giving the chemical potential by asingle smulation in which two averages are
recorded while sampling the W system. Bennett’s method [6] isin some sense the opposite: it
requires ssmulations of both the N-1 and N-particle systems. Because the weighting function W
has no bearing on the sampling of configurations, this method is amenable to analytic
optimization. Bennett completed this, and his name is usually associated with the staging
approach together with the optimized prescription for W. Staged insertion and staged deletion
are lesswidely considered as techniques for measuring the chemical potential, although they are
routinely practiced in the computational chemistry community [20].

The considerations of entropic versus energetic barriers to sampling apply—albeit to a
lesser degree—when free-energy perturbation methods are extended to these multistage forms.
In particular the multistage methods suffer to the extent that they contain a*“deletion” staging
component, defined such that the barrier to good sampling isenergeticin origin. By tinkering
with the weighting function, umbrella sampling and Bennett’ s method can overcome this
handicap to some degree, but for umbrella sampling thisinvolves a ddlicate balancing, while
with Bennett’ s optimization the method reverts to something that islittle different than asingle-
stage insertion. The only one of the four approaches that has no “deletion” component is staged
insertion, and indeed our study of these methods in the context of the hard-sphere model found

this approach to be highly effective[1].



METHOD
Definition of intermediate stage

We consider two-stage free-energy perturbation methods in which the intermediate stage
has the Nth “test” particle interacting with the remaining N-1 particles as a simple hard sphere of
diameter a. Thus W= 0if the center of the test particle lieswithin adistancea of another
particle center, and W = 1 otherwise. This choice of an intermediate stage immediately
precludes application of the umbrella-sampling and the staged-del etion methods of Table 1,
because both of these methods will always yield the value zero for the residual free energy
difference Aw—An.1. This particular selection of W was recently advocated by Parsonage [21] in
aBennett’ s-form staging scheme, and it is very similar to one proposed earlier by Han et al.
[16] (again in a Bennett’ s-form context).
Description of simulations

We conducted canonical-ensemble Monte Carlo (MC) smulations of 107 Lennard-Jones
(LJ) particles and one hard sphere (HS) at adensity r s3 = 0.9 and temperature kT/e= 1.2. The
LJ potential was truncated at a separation of 2.5s and no long-range correction was applied. Each
simulation sampled 10,000 cycles, where one cycle is defined as one attempted MC trial per
particle. Among the trials were moves that attempted to swap the HS with a L J particle, and
attemptsto re-insert the HS at arandom position. At the end of each cycle the energy change
associated with transforming each LJ particle individually into a HS was measured and kept as the
running average of <W/g>y; the energy change associated with the transformation of the HSto a
L J particle was measured and kept as the running average of <e/W>yy. Also at the end of each
cycle one Widom insertion was performed to measure both <W>y.; and <g>p.1 (respectively,
HS and LJinsertion averages). Several values of the HS diameter a were examined between the
values 0.9 and 0.5. For each value of a fifty completely independent 10,000-cycle simulations
were conducted, each starting from its own, independently equilibrated initial configuration.

Itisclear that for the purpose of economizing the cal cul ations we have taken some liberty
in measuring the averages <W/g>y, <W>p.1, and <g>p.1. Strictly, the system being ssmulated
isthe intermediate W system, so only averages of the form <...>, are obtainable. The error
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incurred with this approximation is not likely to be much worse than other finite-size effects that
are known to be significant for N = 108 at this density. Our aim in the present study is not to
determine a good infinite-system value for the chemical potentia, but instead to demonstrate
some basic points about how staging cal culations should be performed. We will see that the
consequences of bad staging overwhelm any inaccuracies attributable to the finite size of the

simulated system.

RESULTS AND DISCUSSION

Theresultsarelisted in Table 2. We report the mean of the fifty independent ensemble
averages gathered for each value of the HS diameter a, thus each value represents the average
from 500,000 ssimulation cycles. In different instances we present the average with its associated
variance from the fifty smulations, or with its standard error. These two statistics in the present
case are related by the formula (standard error) = (variance’50)1/2. For each a the chemical
potential is reported twice: once as computed via single-stage Widom insertion (<g>y.1), and
once as computed via the two-stage insertion using the HS intermediate (W>p.1<e/W>y). We
notethat al two-stage values of the chemical potential are mutually cons stent—considering their
standard errors—and in particular there seemsto be no trend with a. This gives us confidence that
we have not introduced a serious error by taking the averages <...>y and <...>p.1 during
simulations of the W system. The single-stage values are not consistent with the two-stage results,
even considering the standard errors. Thisisapoint we will return to shortly.

In principle the averages for the second stage HS® LJ“insertion” transformation
(<a/W>yy) and its “deletion” opposite LI® HS (<W/g>) should be equal in magnitude and
oppositein sign. Itisclear from Table 2 that thisis not the case. The deletion valueis consis-
tently larger in magnitude, which trandatesinto a consistently smaller value for the chemical
potential. Thisoutcomeis evident in the results of Han et al. [16] and Parsonage [21]—both
studies reported (without comment) chemical potentials consistently smaller than the straight
single-stage Widom insertion values. Clearly our second-stage del etion-insertion discrepancy

must be attributed to inadequate sampling in the deletion calculation, which (not surprisingly)
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returns aresult that isvirtualy (and incorrectly) independent of a. Parsonage noticed this
breakdown in his studies, but did not consider it to be asignificant problem until a is taken
somewhere less than 0.875. We see problemsin evidence even for a aslargeas 0.9. First we
note the contrast between the variances of the insertion and deletion methods: the variance as-
sociated with HS® LJistwo orders of magnitude smaller than that with LJ® HS. A particu-
larly worrisome feature of the LIJ® HS calculation isdemonstrated in Fig. 2. Thebiasin the
stochastic error for the LIJ® HS calculation isstriking. Only three of the fifty 10,000-cycle
simulation return an average that is below the correct value; al others are above. When
<W/g>y (as opposed to the logarithm of it presented in the figure) is averaged over al fifty
runs, these three are sufficient to bring the overall chemical potential reasonably close to the cor-
rect result, although it remains too high (see Table 2). In sharp contrast the HS® LJcacula
tion yields aresult that is not biased in either direction while exhibiting a much smaller variance.
Itisof interest to examine the effectiveness of the staged-insertion technique as afunction
of the intermediate-stage HS diameter a. We are epecially interested in how the effectiveness
is associated with the difference between the entropy change for the first stage and the entropy
change for the second stage, D(DS) = DSHsp 13— DSHs It has been advocated [22, 23] that
this difference be formed for the free energy changes rather than the entropy changes, and that
optimum staging occurs when the difference is zero. The qualitative arguments presented in the
introduction (and in more detail in our study using the hard-sphere model [1]) have led usto
Speculate that the entropy, not the free energy, is the appropriate quantity to consider to optimize
the staging. The entropy differences are easily computed from the simulation data. For an
infinite system there is no energy change associated with the insertion of HS, so DSygk = —
bDA{s = In<kW>p.1. The energy change associated with converting the HSto aLJ particleis
just twice the average energy per particle, which has been reported by Parsonage [21] as U/N =
—5.36. Thus DSysp Lyk = b(-DA+DU)yse Ly = In<e/W>y, —8.93. The entropy-change
difference and the free-energy-change difference are displayed in Fig. 3. Inthisfigure we also

present the reduced variance Ms2, where M = 10,000 is number of free-energy perturbation
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measurements per smulation; this group is expected [1] to be asymptotically independent of M
for M ® ¥. Figure 3 confirms that the entropy, and not the free-energy, is the appropriate
guantity to consider when defining an intermediate stage that minimizes the overall error in the
calculation. The minimum variance occurs at dightly larger a than predicted by the entropy
rule. Thisdiscrepancy hasto do with the measurement of the energy component of the total
free-energy change, and can be explained quantitatively (to be described in future work).

Before closing we should note that the free-energy perturbation calculation in the
“insertion” direction is not without its pitfalls. A careful examination of Fig. 3b (and the
single-stage insertion results of Table 2) findsthat the fluctuationsin a given 10,000-cycle
simulation are misleading, and would indicate an error estimate that is smaller than actually
warranted. Nevertheless the approach isfar superior to the equivalent “deletion” calculation
(where the same situation applies) because (1) the true error isin fact smaller; (2) thereislittle or
no systematic biasto the error; and (3) it is possible, by analyzing the entropy change and
applying probabilistic arguments similar to those presented in our hard-sphere study [1], to
know how much sampling is needed to obtain credible results. One does not haveto rely on the
simulation statistics alone to apply confidence limits to the free-energy change. A similar

analysis cannot reliably be performed for the deletion anal og.

CONCLUSIONS

We have demonstrated the substantial asymmetry of free-energy perturbation calculations
in application to arealistic molecular moddl. It iscritica alwaysto apply this methodology in
the “insertion” direction, i.e., the ensemble governing the sampling should be of greater entropy
than the perturbation ensemble. We have confirmed our earlier conjecture that the entropy
difference isthe important quantity to consider when optimizing staged free-energy perturbation
calculations. The lessons learned by studying these methods in the context of hard spheres have

been shown to possess broader applicability.
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Table 1. Four approachesto splicing single-stage free-energy perturbations to construct
multistage forms. The arrows point from the system in which the sampling is being performed

(the‘O’ system of Eq. (1)), to the perturbation system (the ‘1’ system).

Formula
Staging Approach Name exp[- bm] =
(N-1)= W® N Umbrellasampling (& | W), (L Wy
(N-)® W N Bennett’s method (W/ &) Wiy
(N-)® W® N Staged insertion (& /W) AWi_q
(N-1)= W= N Staged deletion (W) Wiy

Table 2. Simulation results for the various staging elements. Parenthetized values are the
variance associated with the tabled value, while subscripted values describe the standard error in

the last digit of the tabled vaue.

Partial insertion/del etion averages Chemical potential, bm
HS diameter, LJ® HS HS® LJ HSinsertion One stage Two stages
a —In<W/e>y —In<e/W>y, —An<W> 4 dn<e>yng | HAn[<W>y<e/W>y)
0.90 6.30 (1.6) | —6.21(0.02) | 8.73(0.41) 2.7, 2.529
0.88 5.77 (4.8) | -5.47 (0.04) | 7.98 (0.22) 145 2.517
0.85 5.57 (5.7) | -4.38(0.07) | 6.96 (0.10) 4.93 2.58¢
0.82 5.00 (20) | —3.43(0.16) | 5.97 (0.03) 4.64 2.54¢
0.80 3.43(19) | —2.78(0.29) | 5.38 (0.02) 1.87 2.607
0.70 4.70 (19) —0.59 (1.7) | 2.93 (0.002) 2.65 2.344g
0.50 5.72 (7.8) | +1.66 (5.0) | 0.63 (0.000) 3.3, 2.2939




FIGURE CAPTIONS

Figure 1. Schematic depiction of phase space, and the relation between regions important to
systems of N—1 and N particles, respectively.

Figure 2. Running averages for the second stage of atwo-stage free-energy perturbation
employing a hard-sphere intermediate of diameter a = 0.88. Thin lines represent each of fifty
independent 10,000-cycle simulations, and the thick horizonal line at 5.47 describes the best
estimate of the correct value for the 108-particle system. (a) “deletion” calculation LJ® HS;
(b) “insertion” calculation HS® LJ.

Figure 3. Difference D(DS/K) in entropy change between the stages of a two-stage free-energy
perturbation calculation (open squares). Corresponding quantity for free energy is presented
aso (filled circles). Intersection with the dashed line indicates the zero. Scaled variance Ms2 is
plotted on the right ordinate (open circles). All results are computed from MC simulations

described in the text.
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